Control of biochemical reactions through supramolecular RING domain self-assembly.
نویسندگان
چکیده
RING domains act in a variety of unrelated biochemical reactions, with many of these domains forming key parts of supramolecular assemblies in cells. Here, we observe that purified RINGs from a variety of functionally unrelated proteins, including promyelocytic leukemia protein, KAP-1TIF1beta, Z, Mel18, breast cancer susceptibility gene product 1 (BRCA1), and BRCA1-associated RING domain (BARD1), self-assemble into supramolecular structures in vitro that resemble those they form in cells. RING bodies form polyvalent binding surfaces and scaffold multiple partner proteins. Separation of RING bodies from monomers reveals that self-assembly controls and amplifies their specific activities in two unrelated biochemistries: reduction of 5' mRNA cap affinity of eIF4E by promyelocytic leukemia protein and Z, and E3 ubiquitin conjugation activity of BARD1:BRCA1. Functional significance of self-assembly is underscored by partial restoration of assembly and E3 activity of cancer predisposing BRCA1 mutant by forced oligomerization. RING self-assembly creates bodies that act structurally as polyvalent scaffolds, thermodynamically by amplifying activities of partner proteins, and catalytically by spatiotemporal coupling of enzymatic reactions. These studies reveal a general paradigm of how supramolecular structures may function in cells.
منابع مشابه
Self-assembly formation of mechanically interlocked [2]- and [3]catenanes using lanthanide ion [Eu(III)] templation and ring closing metathesis reactions.
The formation of interlocked lanthanide-based catenanes using Eu(iii)-directed synthesis is described (catenation being achieved via a ring-closing metathesis reaction); the self-assembly formation of the supramolecular structures was analysed by HRMS, NMR and luminescent spectroscopies.
متن کاملSelf-Assembled Ring-in-Ring Complexes from Metal-Ligand Coordination Macrocycles and β-Cyclodextrin
We present a simple and efficient approach to ring-inring nanostructures from readily available starting materials through self-assembly process. The self-assembly tool kit includes divalent dipyridyl ligands, Pd(II) metal ions, and β-cyclodextrin (β-CD). A series of dipyridyl ligands are shown to form inclusion complexes with β-CD in aqueous solution as a result of hydrophobic interactions. On...
متن کاملTwo-dimensional self-assembly of amphiphilic porphyrins on a dynamically shrinking droplet surface.
Developing a new field of molecular self-assembly in the sub-micrometer regime-with precision as high as that used to make discrete nano-sized molecular architectures through molecular design-is a major challenge for supramolecular chemistry. At present, however, there is no effective strategy for controlling the assembling molecules when their quantity is greater than one thousand. Herein, we ...
متن کاملStructure of an L27 domain heterotrimer from cell polarity complex Patj/Pals1/Mals2 reveals mutually independent L27 domain assembly mode.
The assembly of supramolecular complexes in multidomain scaffold proteins is crucial for the control of cell polarity. The scaffold protein of protein associated with Lin-7 1 (Pals1) forms a complex with two other scaffold proteins, Pals-associated tight junction protein (Patj) and mammalian homolog-2 of Lin-7 (Mals2), through its tandem Lin-2 and Lin-7 (L27) domains to regulate apical-basal po...
متن کاملProtein−Nanoparticle Hydrogels That Self-assemble in Response to Peptide-Based Molecular Recognition
Recently, supramolecular hydrogels assembled through nonspecific interactions between polymers and nanoparticles (termed PNP systems) were reported to have rapid shear-thinning and self-healing properties amenable for cell-delivery applications in regenerative medicine. Here, we introduce protein engineering concepts into the design of a new family of PNP hydrogels to enable direct control over...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 24 شماره
صفحات -
تاریخ انتشار 2002